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Exact solution of close-packed dimers on the kagomé lattice
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It is well known that exact enumerations of close-packed dimers can be carried out for two-dimensional
lattices. While details of results are now known for most lattices, due to the unique nature of the lattice
structure, there has been no complete analysis for the kagomé lattice. Here we derive the close-form expression
(1/3) In(4xyz) for the free energy of close-packed dimers on the kagomé lattice, where x, y, and z are dimer
weights. We use two different approaches: the Kasteleyn method of evaluating a Pfaffian and an alternative
vertex model formulation. Both methods lead to the same final expression. The correlation function between
two dimers at a distance equal or greater than two lattice spacings is found to vanish identically.
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I. INTRODUCTION

A central problem in statistical physics is the enumeration
of close-packed dimers on lattices. The origin of the problem
has a long history tracing back to the 1937 paper of Fowler
and Rushbrooke [1] in their attempt at enumerating the ab-
sorption of diatomic molecules on a surface. A milestone in
the history of the dimer problem is the exact solution for the
square lattice obtained by Kasteleyn [2] and Temperley and
Fisher [3] in 1961. Indeed, the method of Kasteleyn is quite
general and applicable to all planar lattices [4]. Exact results
obtained in this way are summarized in a recent review [5]
for a number of two-dimensional lattices.

In the case of the kagomé lattice, however, there has been
no complete analysis of the dimer problem other than studies
of pure dimer enumerations, most of which are numerical
and series expansions (see [6] and references cited therein).
In recent years there has been considerable interest in the
study of physical phenomena on the kagomé lattice. These
range from high-T, superconductivity [7], Heisenberg anti-
ferromagnets [8—12], and quantum dimers [13] to the occur-
rence of spin-liquid states [14]. It has also been shown that
the consideration of close-packed dimers is related to the
ground state of a quantum dimer model [15]. In light of these
developments, it is of pertinent interest to take a fresh look at
close-packed dimers for the kagomé lattice.

In this Rapid Communication we consider this problem
and derive the closed-form expression

fkagomé(x’y’z) = (1/3)In(4xyz) (1)

for the free energy (for definition of terms see below), a
formula quoted in [5]. As exact solutions for other lattices
are invariably of the form of a double integral akin to the
Onsager solution of the Ising model [5], the very simple
expression of the solution (1) and its logarithmic dependence
on dimer weights are novel and unique. It points to the spe-
cial role played by the kagomé lattice (which often makes a
problem more amenable) and suggests that caution must be
taken in generalizing physical results derived from the
kagomé lattice. For example, as we shall see in Sec. IV be-
low, the correlation between two dimers is identically zero at
distances equal or greater than two lattice spacings on the
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kagomé lattice, but this conclusion does not hold for other
lattices.

The kagomé lattice is shown in Fig. 1, where x, y, and z
are dimer weights along the three principal directions. We
denote the lattice by £. Let N (=even) be the number of sites
of L, so the lattice can be completely covered by N/2
dimers. The dimer generating function is defined to be the
summation

Zkagomé(x’ys 7)= E xxytyzl (2)

dimer coverings

over all close-packed dimer configurations of L. Here, n, is
the number of dimers with weight x, etc., subject to ny+n,
+n,=N/2. Our goal is to evaluate the per-dimer free energy

. 1
fkagomé(x’y»z) = I\lllm IE In Zkagomé(x’y’z) (3)

in a close form. Past attempts have been confined to enu-
merations of f(1,1,1). Here we consider the problem for
general x, y, and z, a consideration which can find applica-
tion to anisotropic kagomé systems such as the volborthite
antiferromagnet [12].

We derive the solution (1) using two different methods:
the Kasteleyn method of evaluating a Pfaffian and alternately
a method of a vertex model formulation, which we describe
in the next two sections.

X X X
ZPN/72 YN /z
/N N x Ny
XN /2 XN /2 XN /z
/N YN\ xS\
X X X

FIG. 1. The kagomé lattice £ with dimer weights x, y, and z in
the three principal directions.
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II. PFAFFIAN APPROACH

The first step of the Pfaffian method is to find a Kasteleyn
orientation [2] of lattice edges. A Kasteleyn orientation of a
planar lattice is an orientation of edges such that every tran-
sition cycle consisting of a loop of edges derived from the
superposition of two dimer coverings has an odd number of
arrows pointing in the clockwise direction, a property which
we term as clockwise odd. While Kasteleyn [4] has demon-
strated that such an orientation is possible for all planar
graphs, the actual orientation of edges for a given lattice, or
graph, still needs to be worked out and the crux of the matter
of the Kasteleyn method is the finding of the appropriate
clockwise-odd orientation.

For the kagomé lattice a Kasteleyn orientation can be
taken as that shown in Fig. 2. The kagomé lattice is com-
posed of up-pointing and down-pointing triangles. The ori-
entation in Fig. 2 consists of orienting all up-pointing tri-
angles and every other down-pointing triangles in the
counterclockwise direction, with the other half of the down-
pointing triangles oriented as shown. In this orientation a
unit cell of the lattice consists of the six sites forming two
neighboring down-pointing triangles, which are numbered
1,...,6 as shown. Our orientation is different from that used
in [6].

To see that the orientation in Fig. 2 is indeed a Kasteleyn
orientation, we note that all transition cycles in Fig. 2 are
clockwise odd. As all transition cycles on the lattice can be
formed by deforming those in Fig. 2 without altering the
clockwise odd property, all transition cycles are also clock-
wise odd so the orientation in Fig. 2 is a good Kasteleyn
orientation [16]. This is essentially the argument of Kaste-
leyn [4].
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FIG. 2. The Kasteleyn orientation of the kagomé lattice. A unit
cell is the region bounded by dashed lines containing the six sites
numbered 1,...,6.

After rendering the Kasteleyn orientation, we can write
the dimer partition function as a Pfaffian. As the analysis is
now standard we follow the standard procedure [see, for ex-
ample, Eq. (4.34) of [17]] and arrive at the result

1 1 27 (27
fkagomé(x’yaz) = <§>WJ; J;) In Pf[M(@, ¢)]d0 d¢

1 1 27 (2w
0 0
4)

Here the factor of 1/3 in the first line comes from the fact
that there are three dimers per unit cell in a close-packed
configuration, and Pf{M (6, ¢)]=+/det|M (6, ¢)| is the Pfaffian
of the 6 X 6 matrix

M(6,$) = a(0,0) + a(1,0)¢!? + a(—= 1,0)e" + a(0,1)e’® + a(0,- 1)e™'® + a(1,1)"*? + a(- 1, 1)e~"(*9)

0 . _y 0 g _yerit
-z 0 x(1+¢€%) —ze'? 0 0
~ y —x(1+¢7) 0 y 0 0 5)
a 0 ze™1? -y 0 -z -y
—ze!#® 0 0 z 0 x(— 1+
ye'? 0 0 y  x(1-e7) 0
|
The a matrices are read off from Fig. 2 to be a(0,— 1)==47(0,1), (6¢)
0z -y 0 0 0 a(=1,-1)=-a’(1,1), (6d)
-z 0 x 0 O O
-x 0 0O O
a0,0=| Y . (6a) 000 0 00
00 -y 0 -z -y 00 x -z00
0O 0 0 z 0 =-x 000 0O 00
0 0 0 y x 0 al.O={060 0 00| (6e)
000 O 0 x
a(=1,0)=-d’(1,0), (6b) 000 0 00
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FIG. 3. An extended kagomé lattice £’ constructed by inserting
a decorating site attached to two inserted edges of weight 1 as
shown. The decorating sites are denoted by solid circles. The unit
cell is the region bounded by dashed lines. Repeating unit cells
form a square lattice.

000000
000000
000000

a(0,1) = , (6f)

000000
000000
y 00000
0 00000
000000
0 00000

D=1 5 00000 (62)

~20000 0
000000

where the superscript 7 denotes the matrix transpose.
The evaluation of the determinant in Eq. (4) gives the
surprisingly simple result

det[M(6, )] = 16x>y%2>. (7)

The substitution of Eq. (7) into Eq. (4) now yields Eq. (1).
The expression (7) and result (1) have previously been ob-
tained for x=y=z=1 in [6] for pure dimer enumerations.

III. VERTEX-MODEL APPROACH

The kagomé dimer problem can also be solved using a
vertex model approach which is conceptually simpler. This
involves the mapping of the dimer problem onto a vertex
model for which the solution is known.

The first step of the mapping is to introduce the extended
kagomé lattice L' of Fig. 3. The extended lattice L' is con-
structed from £ by introducing 4N/3 extra lattice edges with
weight 1 and 2N/3 new (decorating) sites as shown. By in-
spection it is clear that a bijection exists between dimer con-
figurations on £ and £'. This permits us to consider instead
the dimer problem on L.

The dimer problem on £’ is next mapped onto a vertex
model.
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FIG. 4. Mapping between vertex and dimer configurations and
the corresponding weights.

The extended lattice £’ consists of N/3 unit cells each of
which is the region bounded by dashed lines shown in Fig. 3.
The unit cells form a square lattice S. We next map dimer
configurations on £’ onto vertex configurations on S, by
regarding the four edges extending from a unit cell of £’ as
the four edges incident to a site on S. To each extending edge
on L’ covered by a dimer, draw a bond on the corresponding
edge on S, and to each extending edge not covered by a
dimer, leave the corresponding edge empty. Then, as shown
in Fig. 4, dimer coverings of a unit cell are mapped onto
vertex configurations on S. Since the number of bonds ex-
tending from each vertex is either 1 or 3, which is an odd
number, we are led to the odd eight-vertex model considered
in [18].

Vertex weights of the odd eight-vertex model can be read
off from Fig. 4 as

uyp=xz, U=y,

U=y, Uy=XZ,

Us=xy, Ug =2, Ur;=2 Ug=xy. (8)

The per-vertex eight-vertex model free energy is then

fSV(-x Vs Z) —In Zkagome(-x Y, Z) (9)

N/3
Comparing Eq. (9) with Eq. (3), we obtain the equivalence

2
fkagomé(x’y’z) = (g)fSV(xayaZ)~ (10)

Now the weights (8) satisfy the free-fermion condition
ulM2+M3u4=M5M6+M7M8 (11)

for which the per-vertex eight-vertex model free energy has
been evaluated in [18] as

2 2
f8V=16+12f0 dofo dpIn F(6,¢), (12)
where
F(6,¢) =2A +2D cos(0— ¢) + 2E cos(0+ ¢) +4A, sin® ¢
+4A, sin” 0,
with
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A= (uyus + upug)” + (usuy + ugis)°,
D = (usu7)” + (ugug)* — 2u s34,
E =— (uju3)? = (uputg)? + 2usuguqug,
Ay = (uyuy - usug)’,

Ay = (usuy — usug)®. (13)

The solution (1) is now obtained by substituting Eqs. (13)
into Egs. (12) and (10).

IV. DIMER-DIMER CORRELATION

The dimer-dimer correlation function can be evaluated by
either considering a perturbation of the Pfaffian as in [19,20]
or by applying the Grassmannian method of [21,22]; details
of both approaches will be given elsewhere. Here we sketch
steps in the Pfaffian computation.

Define for the lattice edge connecting sites i and j in unit
cell at r=(r,,r,) an edge vacancy number

njpr=1, if ij is empty,
=0, if ij is occupied, (14)

where (-) denotes the configurational average. Then, the cor-
relation function between two dimers on edges ij in cell r;
and k€ in cell r, is

c(ij,ryskl,ro) = (i Mg e,) = e Nkge)). - (15)

To make use of Eq. (15) we need to compute the dimer
generating function with specific edge(s) missing. Let A be
the antisymmetric matrix derived from the Kasteleyn orien-
tation, and let A’ denote the antisymmetric matrix derived
from A with edge ij—say, in computing (iz;;)—missing.
Write

Z="PfA,
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7' =PfA’ =Pf[A + A], (16)

where A is the matrix with zero elements everywhere except
the ij element is —A;; and the ji element is —A;(=A;;). Then

<ﬁ,:,->=Z’/Z=PfA’/PfA (17)
and

iy = detA’ B det[A(I+ GA)]
il = detA det A

=det(I+ GA), (18)

where G=A"" is the Green’s function matrix and / the iden-
tity matrix.

In computing Eq. (18) we need only to keep those row(s)
and column(s) in A and A~! where elements of A are non-
zero. In addition, in the interior of a large lattice, the corre-
lation depends only on the difference r=r,-r,={r,,r}, so
elements of G are given by

1
(2m)?

2@ (2
o= [ [ avageronio . 19
0 0

These considerations lead to the explicit evaluations of Eq.
(18) and, hence, the correlation (15).

Particularly, due to the fact that elements in A~'(6, )
contain only a monomial of e*'? and ¢*'%, a consequence of
the fact that the determinant detA is given by the simple
expression (7), the integral (19) vanishes for |r,—7,/>1 or
|r1y—ra|>1. This leads to the result

c(ij,ry;k€,r) =0, |rj—ry =2. (20)

The absence of the dimer-dimer correlation beyond a certain
distance, which is also found in the Sutherland-Rokhsar-
Kivelson state of a quantum dimer model [13], is a property
unique to the kagomé lattice. This underscores the special
role played by the kagomé lattice in the statistical mechanics
and quantum physics of lattice systems.
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